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The data sets and analysis used to construct Table 1 are described here. For 
expression microarrays features were genes. For methylation beadchips, 
features were probed CpGs. For the SNP chips, used to measure copy number, 
features were the non-polymorphic probes. For second-generation sequencing, 
we defined a feature as the coverage (number of mapped reads) in 10,000 
basepair windows. For all studies we obtained raw feature level data and 
performed quantile normaliza- tion 1. For the SNP chips and gene expression 
arrays we log-transformed the quantile normalized data. Scripts and data to 
reproduce our analyses are available from http://rafalab.jhsph.edu/batch 

Data set 1  

This published data set 2 was demonstrated to have a confounded batch effect 3. 
The outcomes of interest were different types of bladder cancer. 

Data set 2 

 This published data set 4 was demonstrated to have a large confounded batch 
effect 5. We obtained CEL files, processed with RMA 6. The outcome of interest 
was human populations. 

Data set 3  

This published data set 7 8 was demonstrated to have a completely confounded 
batch effect 9. The outcome of interest was ovarian cancer. 

Data set 4  

HapMap phase 3 10 (http://hapmap.ncbi.nlm.nih.gov). The outcome of interest 
was human populations. We considered only non-related individuals. 

Data set 5  

This bipolar disease genome wide association study (GWAS) 11 data was 
obtained from dbGap: http://www.ncbi.nlm.nih.gov/ gap. The dbGaP accession 
number is phs000017.v3.p1. The data was obtained through the Genetic 
Association Information Network (GAIN). The outcome of interest was bipolar 
disease (cases and controls). Note that the publication was related to genotypes 
and here we analyze copy number data. We do not present evidence that 
genotype data were affected by batch effects. 

Data set 6  

These data are from ovarian cancer samples hybridized to Affymetrix 
HT_HGU133A. All data freely available here: ftp://ftp1. 
nci.nih.gov/tcga/tumor/ov/cgcc/broad.mit.edu/ht_hg-u133a/transcriptome/. We 



processed all CEL files with RMA 6. 

Data set 7 

 These data are from ovarian cancer hybridized to Agilent human array. All data 
freely available here: ftp://ftp1.nci.nih.gov/ 
tcga/tumor/ov/cgcc/unc.edu/agilentg4502a_07_3/transcriptome/ We used the 
processed data made available at the url. 

Data set 8  

Ovarian cancer samples hybridized to Illumina Methylation BeadChip platform. 
Data freely available here: ftp://ftp1.nci.nih.gov/tcga/tumor/ov/cgcc/jhu-
usc.edu/humanmethylation27/methylation/ We used the beta values. 

Data set 9  

We downloaded aligned reads in chromosome 16 from the 1000 genomes 
project pilot III data (targeted sequencing of Hapmap samples in 1000-2000 
regions, NCBI SRA accession number SRP000033) available from ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/. We considered the number of fragments 
sequenced in 10kb genomic regions as a measure of copy number. We selected 
samples sequenced with Illumina technology at the Broad Institute and aligned 
using MAQ 12. To avoid batch effects due to family, we used a single sample from 
each identified family in these Hapmap samples. This resulted in looking at 131 
different individuals in 6 Hapmap populations. The outcome of interest was 
human population. We only kept multiple runs for individuals if done on the same 
date. We binned chromosome 16 into 10Kb regions and use the total number of 
reads aligned to each bin for each individual as a statistic. For this analysis we 
kept only regions that overlap exons annotated in Ensembl. These counts were 
then quantile normalized to get a final count of aligned reads per individual and 
genomic region. 
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